Unbounded solutions of second order discrete BVPs on infinite intervals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of Second Order BVPs On Infinite Intervals

In this work, we are concerned with a boundary value problem associated with a generalized Fisher-like equation. This equation involves an eigenvalue and a parameter which may be viewed as a wave speed. According to the behavior of the nonlinear source term, existence results of bounded solutions, positive solutions, classical as well as weak solutions are provided. We mainly use fixed point ar...

متن کامل

Existence of Solutions to Second-Order BVPs on Time Scales

2 School of Mathematics The University of New South Wales, Sydney NSW 2052, Australia Abstract:We consider a boundary value problem (BVP) for systems of second-order dynamic equations on time scales. Using methods involving dynamic inequalities, we formulate conditions under which all solutions to a certain family of systems of dynamic equations satisfy certain a priori bounds. These results ar...

متن کامل

On Discrete Moments of Unbounded Order

Moment-based procedures are commonly used in computer vision, image analysis, or pattern recognition. Basic shape features such as size, position, orientation, or elongation are estimated by moments of order ≤ 2. Shape invariants are defined by higher order moments. In contrast to a theory of moments in continuous mathematics, shape moments in imaging have to be estimated from digitized data. I...

متن کامل

Existence of Positive Solutions of Boundary Value Problems for Second-order Functional Differential Equations on Infinite Intervals

In present paper, the author investigates the existence of positive solutions of boundaryvalue problems for second-order functional differential equations on infinite intervals as followsx′′ − p(t)x′ − q(t)x+ f(t, xt,xt) = 0, t ∈ I = [0,∞),αx(t)− βx′(t) = ξ(t) ≥ 0, t ∈ [−τ, 0], ξ(0) = x(∞) = 0,where α ≥ 0, β > 0, ξ(t) ∈ C[−τ, 0]. By applying fixed point index theorem on cone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2016

ISSN: 2008-1901

DOI: 10.22436/jnsa.009.02.02